Discovering statictics using SPSS : (Registro nro. 110563)

000 -Líder
Campo de control de longitud fija 17546nam a22002657a 4500
003 - Identificador del número de control
campo de control CO-BoICC
005 - Fecha y hora de la última transacción
campo de control 20171030161958.0
008 - Elementos de longitud fija -- Información general
Campo de control de longitud fija 171027t20092005xxu||||fr|||| 001 0 eng d
020 ## - ISBN
Número Internacional Normalizado del libro (NR) 9781847879066
020 ## - ISBN
Número Internacional Normalizado del libro (NR) 9781847879073
040 ## - Fuente de catalogación
Agencia de catalogación original CO-BoICC
041 0# - Código de idioma
Código de idioma para texto/pista de sonido o título separado eng
082 04 - Número de clasificación decimal Dewey
Número de la edición 21
Número de clasificación 302.015195
Signatura librística F453d
100 1# - Entrada principal -- Nombre personal
Nombre personal Field, Andy,
Fechas asociadas con el nombre 1973-
245 10 - Mención del título
Título Discovering statictics using SPSS :
Parte restante del título and sex and drugs and rock 'n' roll /
Mención de responsabilidad, etc. Andy Field
250 ## - Mención de edición
Mención de edición Tercera edición
260 ## - Publicación, distribución, etc. (Pie de imprenta)
Lugar de publicación, distribución, etc. Los Angeles :
Nombre del editor, distribuidor, etc. SAGE,
Fecha de publicación, distribución, etc. 2009
300 ## - Descripción física
Extensión xxxii, 819 páginas ;
Dimensiones 27 cm
505 0# - Nota de contenido con formato preestablecido
Nota de contenido con formato preestablecido Why in my evil lecturer forcing me to leran statistics?. -- What the hell an I doing here? I don't belong here. -- The research process. -- Initial observation: finding something that needs explaining. -- Generating theories and testing them. -- Data collection 1: what to measure. -- Variables. -- Measurment error. -- Validity and reliability. -- Data collection 2: how to measure. -- Correlational research methods. -- Experimental research methods. -- Randomization. -- Analysing data. -- Frequency distributions. -- The centre of a distribution. -- Using a frequency distribution to go beyond the data. -- Fitting statistical models to the data. -- Everything you ever wanted to knoe about statistics (well, sort of). -- Building statisticals models. -- Population and samples. -- Simple statisticals models. -- Simple statistical models. -- The mean: a very simple statistical model. -- Assessing the fit of the mean: sums squares, variance and standard deviations. -- Expressing the mean as a model. -- Going beyond data. -- The standard error. -- Confidence intervals. -- Using statistical models to test research questions. -- Test statistics. -- One- and two-tailed test. -- Type I and Type II errors. -- Effect sizes. -- Statistical power. -- The SPSS environment. -- What will this chapter tell me?. -- Version of SPSS. -- Getting started. -- Teh data editor. -- Entering data into data editor. -- The 'Variable View'. -- Missing values. -- The SPSS viewer. -- The SPSS SmartViewer. -- The syntax window. -- Saving files. -- Retrieving a file. -- Exploring data with graphs. -- The art of presenting data. -- What makes a good graph?. -- Lies, damnes lies, and ... erm ... graphs. -- The SPSS Chart Builder. -- Histograms: a good way to spot obvious problems. -- Boxplots (box-whisker diagrams). -- Graphing means: bar charts and error bars. -- Simple bars charts for independent means. -- Cluestered bar charts for independent means. -- Simple bar charts for related means. -- Clustered bar charts for related means. -- Clustered bar charts for 'mixed' desings. -- Line charts. -- Graphing relationships: the scatterplot. -- Simple scatterplot. -- Grouped scatterplot. -- Simple and grouped 3-D scatterplots. -- Matrix scatterplot. -- Simple dot plot or density plot. -- Drop-line graph. -- Editing graphs. -- Exploring assumptions. -- What are assumptions?. -- Assumptions of parametric data. -- THe assumption of normally. -- Oh, no, it's that pesky frequency distribution again: checking normality visually. -- Quantifying normality with numbers. -- Exploring groups of data. -- Testing wheter a distribution is normal. -- Doing the Kolmogorov-Smirnov test on SPSS. -- Output from the explore procedure. -- Reporting the K-S test. -- Testing for homogenity of variance. -- Levene's test. -- Reporting Levene's test. -- Correcting problems in the data. -- Dealing with outliers. -- Dealing with on-normality and unequeal variances. -- Transforming the data using SPSS. -- When it all goes horribly wrong. -- Correlation. -- Looking at relationships?. -- How do we measure relationship?. -- A detour into the murky world of covariance. -- Standardization and the correlation coefficient. -- The significance of the correlation coefficient. -- Confidence intervals for r. -- A word of warning about interpretation: causality. -- DAta entry for correlation analysis using SPSS. -- Bivariate correlation. -- General procedure for running correlations on SPSS. -- Pearson's correlation coefficient. -- Spearmans's correlation coefficient. -- Kendall's tau (non-parametric). -- Biserial and point-biserial correlations. -- Partial correlation. -- The thory behind part and partial correlation. -- Partial correlation using SPSS. -- Semi-partial (or part) correlations. -- Comparing correlations. -- Coparing independents rs. -- Comparing dependent rs. -- Calculating the effect size. -- How to report correlation coefficients. -- Regression. -- An introduction to regression. -- Some important information about straight lines. -- THe method of least squares. -- Assessing the godness of fit: sums of squares, R and R². -- Assessing individual predictors. -- Doing simple regression on SPSS. -- Interpreting a simple regression. -- overall fit fo the model. -- Model parameters. -- Using the models. -- Multiple regression: the basics. -- An example of a multiple regression model. -- Sums of squares, R and R². -- Methods of regression. -- How accurate is my regression model?. -- Assessing the regression model I: diagnostics. -- Assessing the regression model II: generalization. -- How to do multiple ression using SPSS. -- Some things to think about before the analysis. -- Main options. -- Statistics. -- Regression plots. -- Saving regression diagnostics. -- Further options. -- Interpreting multiple regression. -- Descriptives. -- Summary of model. -- Model parameters. - Excluded variables. -- Assesinng the assumption of no multicollinearity. -- Casewise diagnostics. -- Checking assumptions. -- How to report multiple regression. -- Categorical predictors and multiple regression. -- Dummy coding. -- SPSS output for dummy variables. -- Logistic regression. -- Background to logistic regression. -- What are principles behind logictic regresion?. -- Assessing the model R and R². -- Assessing the contribution of predictors: the Wald statistics. -- The odds ratio: Exp(B). -- Methods of logistic regression. -- Assumtions adn things that can go wrong. -- Assumptions and things that can go wrong. -- Assumptions. -- Incomplete information from the predictors. -- Complete separation. -- Overdispersion. -- Binary logistic regression: an example that will make you feel eel. -- Teh main analysis. -- Method of regression. -- Categorical predictors. -- Obtaining residual. -- Further options. -- Interpreting logistic regression. -- The inial model. -- Step 1: intervention. -- Listing predicted probabilities. -- Interpreting residuals. -- Calculating the effect size. -- How to report logistic regression. -- Testing assumptions: another example. -- Testing for linearity of the logit. -- Testing for multicollinearity. -- Predicting several categories: multinominal regression. -- Running multinomial logistic regression in SPSS. -- Statistics. -- Other options. -- Interpreting the multinomial logistic regression output. -- Reporting the results. -- Comparing two means. -- Looking at differences. -- A problem with error bar graphs of repeated-measures desings. -- Step 1: calculate the mean for each participant. -- Step 2: calculate the grand mean. -- Step 3: calculate the adjtusment factor. -- Step 4: create adjusted values for each variable. -- The t-test. -- Rationale for the t-test. -- Assumption for the t-test. -- The dependent t-test. -- Sampling distributions and the standard error. -- The dependent t-test equation explained. -- The dependent t-test and the assumption of normality. -- Dependent t-test using SPSS. -- Output from the dependent t-test. -- Calculating the effect size. -- Reporting the dependent t-test. -- The independent t-test. -- The independent t-test equation explained. -- The independent t-test and the assumption of normality. -- The independent t-test using SPSS. -- Output from the independent t-test. -- Calculating the effect size. -- Reporting the independent t-test. -- Between groups or repeated measures?. -- The t-test as a general lilnear model. -- What if my data are not normally distributed?. -- Coparing several means: ANOVA (GLM 1). -- The theory behind ANOVA. -- Inflated error rates. -- Interpreting F. -- ANOVA as regression. -- Logic of the F-ratio. -- Total sum of squares (SST). -- Model sun of squares (SSM). -- Residual sum of squares (SSR). -- Mean squeares. -- The F-ratio. -- Assumptions of ANOVA. -- Planned contrasts. -- Post hoc procedures. -- Running one-way ANOVA on SPSS. -- Options. -- Output from one-way ANOVA. -- Output for the main analysis. -- Output for planned comparisons. -- Output for post hoc test. -- Calculating the effect size. -- Reporting results from one-way independent ANOVA. -- Violations of assumptions in one-way independent ANOVA. -- Analysis of covariance, ANCOVA (GLM 2). -- What is ANCOVA?. -- aSSUMPTIONS AND ISSUES IN ancova. -- Independence of the covariate and treatment affect. -- Homogeneity of regression slopes. -- Conducting ANCOVA on SPSS. -- Inputtind data. -- Initial considerations. testing the independence of the independent variable and covariate. -- The main analysis. -- Contrast and the other options. - Interpreting the output from ANCOVA. -- What happens when the covariate is escluded?. -- The main analysis. -- Contrasts. -- Interpreting the covariate. -- ANCOVA run as multiple regression. -- Testing the assumption of homo geneity of regression slopes. -- Calculating the effect size. -- Reporting results. -- What to do when assumptions are violated in ANCOVA. -- Factorial ANOVA (GLM 3). -- Theoty of factorial ANOVA (between-groups). -- Factorial desings. -- An example with two independent variables. -- Total sums of squares (SST). -- The model sum of squares (SSM). -- The residual sum of squares (SSR). -- The F-ratios. -- Factorial ANOVA using SPSS. -- Entering the data and accesing the main dialog box. -- Graphing interactions. -- Contrasts. -- Post hoc tests. -- Options. -- Output from factorial ANOVA. Output for the preliminary analysis. -- Levene's test. -- The main ANOVA table. -- Contrasts. -- Simple effects analysis. - Pos hoc analysis. -- Interpreting interaction interaction graphs. -- Caclcutating effect sizes. -- Reporting the results of two-way ANOVA. -- Factorial ANOVA as regression. -- What to do when assumption are violated in factorial ANOVA. -- Repeated-measures desings (GLM 4). -- Introduction to reated-measures desings. -- The assumption of sphericity. -- How is sphericity measured?. -- Assessing the severity of departures from sphericity. -- What is the effect of violating the ssumption of sphericity?. -- What do you do f you violate sphericity?. -- Theory of one-way repeated-measures ANOVA. -- The total sum of squares (SST). -- The within-participant (SSW). -- The model sum of squares (SSM). -- The residual sum of squares (SSR). -- The mean squares. -- The F-ratio. -- The between-partcipant sum of squares. -- One-way repeated-measures ANOVA using SPSS. -- The main analysis. -- Defining contrasts for repeated-measures. -- Post hoc test and additional options. -- Output for one-way repeated-measures ANOVA. -- Descriptives and other diagnostics. -- Assessing and correcting for sphericity: Mauchly's test. -- The main ANOVA. -- Contrasts. -- Post hoc tests. -- Effect sizes for repeated-measures ANOVA. -- Reporting one-way repeated-measures ANOVA. -- Repetead-measures with several independent variables. -- The main analysis. -- Contrasts. -- Simple effect analysis. -- Graphic interactions. -- Other options. -- Output for factorial repeated-measures ANOVA. -- Descriptives and main analysis. -- The effect of drink. -- The effect of imagery. -- The interaction effect (drink x imagery). -- Contrasts for repeated--measures ANOVA. -- Reporting the results from factorial repeated-measures ANOVA. -- What to do when assumtions are violated in repeated-measures ANOVA. -- Mixed desing ANOVA (GLM 5). -- Mixed desings. -- What do men and women look for in a partmer?. -- Mixed ANOVA on SPSS. -- The main analysis. -- Other options. -- Output for mixed factorial ANOVA: main analysis. -- The main effect and gender. -- THe main effect of looks. -- The main affect of charisma. -- The interaction between gender and looks. -- The interaction between gender and charisma. -- The interaction between attractivness and charisma. -- The interaction between looks, charisma and gender. -- Conclusions. -- Calculating effect sizes. -- Reporting the results of mixed ANOVA. -- What to do when the assumptions are violated in mixed ANOVA?. -- Non-parametric tests. -- When to use non-parametric tests. -- Comparing two independent conditions: the Wilcoxon rank-sum test and Mann-Whitney test. -- Theory. -- Unputting data and provisional analysis. -- Output from the Mann-Whitney test. -- Calculating an effect size. -- Writing the results. -- Comparing two related conditions: the Wilcoxon signed-rank test. -- Theory of the Wilicox signed-rank test. -- Running the analysis. -- Output for the ecstasy group. -- Output for the alcohol group. -- Calculating an effect size. -- Writing the results. -- Differences between several ndependent groups: the Kruskal-Wallis test. -- Theory of the Kruskal-Wallis test. -- Inputting data and provisional analysis. -- Doing the Kruskal-Wallis test on SPSS. -- Output from the Kruskal-Wallis test. -- Post hoc test for the Krusla-Wallis test. -- Testing for trends: the Jonkheere-Terpstra test. -- Calculating and effect size. -- Writing and interpreting results. -- Multivariate analysis of variance (MANOVA). -- When to use MANOVA. -- Introduction: similarities and differences to ANOVA. -- Words of warning. -- The example for this chapter. -- Theory of MANOVA. -- Introductionn to matrices. -- Some important matrices and their functions. -- Calculating MANOVA by hand: a worked example. -- Principle of MANOVA test statistics. -- Practical issues when conducting MANOVA. -- Assumptions and how to check them. -- Choosing a test statistic. -- Follow-up analysis. -- MANOVA on SPSS. -- The main analysis. - Multiple comparisons in MANOVA. -- Additional options. -- Output from MANOVA. -- Preliminary analysis and testing assumptions. -- MANOVA tests statistics. -- Unvariate test statistics SSCP Matrices. -- Contrasts. -- Reporting results from MANOVA. -- Following up MANOVA with dicriminant analysis. -- Output from the discriminant analysis. -- Reporting results from the discriminant analysis. -- Some final remarks. -- The final interpretation. -- Unvariate ANOVA or discriminant analysis?. -- What to do when assumptions are violated in MANOVA. -- Exploratory factor analysis. -- When to use factor analysis. -- Factors. -- Graphical representation of factors. -- Mathematical representation of factors. -- Factor scores. -- Discovering factors. -- Choosing a method. -- Communality. -- Factor analysis vs. principal component analysis. -- Theory behind principal component analysis. -- Factor extraction: eigenvalues and scree plot. -- Improving interpretation: factor rotation. -- Research example. -- Before you begin. -- Running the analysis. -- Factor extraction on SPSS. -- Rotation. -- Scores. -- Scores. -- Options. -- Interpreting output from SPSS. -- Preliminary analysis. -- Factor extraction. -- Factor rotation. -- Factor scores. -- Summary. -- How to report factor analysis. -- Reliability analysis. -- Measures of reliability. -- Interpreting Cronbach's ⍺ (some cautionary tales...). -- Reliability analysis on SPSS. -- Interpreting output. -- How to report reliability analysis. -- Categorical data. -- Analysing categorical data. -- Theory analysing categorical data. -- Pearson's chi-square test. -- Fischer's exact test. -- The likelihood ratio. -- yates' correction. -- Assumptions of the chi-square test. -- Doing chi-square on SPSS. -- Entering data: raw scores. -- Entering data: weight cases. -- Running the analysis. -- Output for the chi-squares test. -- Breaking down a significant chi-square test with standarized residuals. -- Calculating an effect size. -- Reporting the results of chi-square. -- Several categorical variables: loglinear analysis. -- Chi-square as regression. -- Assumptions in loglinear analysis. -- Loglinear analysis using SPSS. -- Initial considerations. -- The loglinear analysis. -- Output from loglinear analysis. -- Following up loglinear analysis. -- Effect sizes in loglinear analysis. -- Reporting the results of loglinear analysis. -- Multilevel linear models. -- Hierarchical data. -- The intraclass correlation. -- Benefits of multilevel models. -- Theory of multilevel linear models. -- An example. -- Fixed and random coefficients. -- The multilevel model. -- Assessing the fit and comparing multilevel models. -- Types of covariance structures. -- Some practical issues. -- Assumptions. -- SAmple size and power. -- Centring variables. -- Multilevel modelling on SPSS. -- Entering the data. -- Ignoring the data structure: ANOVA. -- Ignoring the data structure: ANCOVA. -- Factoring in the data structure: random intercepts. -- Factoring in the data structure: random intercepts ans slopes. -- Adding an interaction to the model. -- Growth models. -- Growth curves (polynomials). -- An example: the honeymoon period. -- Restructuring the data. -- Running a growth model on SPSS. -- Further analysis. -- How to report a multilevel model.
541 ## - Nota de fuente inmediata de adquisición
Fuente de adquisición MERCAWORLD
Método de adquisición Compra
Fecha de adquisición 11/07/2017
Precio de compra Factura - 7256
591 ## - Áreas temáticas
Áreas temáticas Ciencias sociales
650 17 - Asiento secundario de materia -- Término temático
Fuente del encabezamiento o término LEMB
Término temático o nombre geográfico como elemento de entrada Ciencias sociales
Subdivisión general Métodos estadísticos
650 14 - Asiento secundario de materia -- Término temático
Término temático o nombre geográfico como elemento de entrada SPSS (Programa para computador)
942 ## - Tipo de Material (KOHA)
Tipo de Item Libros
Existencias
Sistema de clasificacion Coleccion Ubicacion (sede actual) Ubicacion (sede de origen) Fecha de modificacion Proveedor Precio Total Checkouts Signatura topografica Codigo de barras Date last seen Date checked out Numero de ejemplar Restricciones de uso (para el prestamo) Areas tematicas Registro (AÑO) Registro (MES) Fecha de adquisición Factura Forma de adquisicion
  Colección General Sede Centro Sede Centro 27/10/2017 MERCAWORLD 225000.00 2 302.015195 F453d 500079159 21/08/2019 23/04/2019 ej. 1 Libros Ciencias sociales 2017 07 11/07/2107 7256 Compra
Novedades





Sector Cultura


Gobierno de Colombia


Instituto Caro y Cuervo


Sede principal

Sede Casa Cuervo Urisarri:
Calle 10 # 4-69, Bogotá, Colombia


Sede Yerbabuena:
Carretera Central Norte. Kilómetro 9 más 300 metros, Chía (Cundinamarca)

Delegación Madrid, España:

C/Alcalá, 49 Madrid

Horarios de atención:

Sede Casa Cuervo Urisarri:

lunes a viernes de 8:00 a. m. a 5:00 p. m.

Sede Yerbabuena:

lunes a viernes de 8:00 a. m. a 5:00 p. m.

Teléfono:
(+57) 601 3422121


Línea gratuita nacional:
018000111124


Correo electrónico:
contactenos@caroycuervo.gov.co

Correo denuncias por actos de corrupción:
soytransparente@caroycuervo.gov.co

Logo Mincultura

Sede Yerbabuena:
Carretera Central Norte. Kilómetro 9 más 300 metros, Chía (Cundinamarca)

Código postal:
250008

Delegación Madrid, España:
C/Alcalá, 49 Madrid